国民经济行业分类(GB/T 4754-2017)是中国国家标准,用于规范全社会经济活动的分类与代码。该标准由国家统计局起草,国家质量监督检验检疫总局、国家标准化管理委员会批准发布,并于2017年10月1日正式实施。GB/T 4754-2017替代了之前的版本GB/T 4754-2011,并在结构上进行了调整,以更好地适应经济发展的需要和国际标准的要求。
思维导图Mind mapping运筹学蒙特卡罗模是一种基于概率和统计理论的数值计算方法,广泛应用于处理复杂系统和计算问题,尤其是那些涉及多个变量和大量不确定性的情况。Operations research Monte Carlo model is a numerical calculation method based on probability and statistical theory, widely used to handle complex systems and computational problems, especially those involving multiple variables and a large amount of uncertainty.一、定义与原理1、 Definition and Principle蒙特卡罗模拟,又称随机模拟方法,是通过使用随机数(或伪随机数)来模拟解决问题的方法。这种方法得名于摩纳哥的蒙特卡洛赌场,因为其随机性和不可预测性与赌博游戏相似。蒙特卡罗模拟的核心思想是通过随机抽样来近似计算一个复杂问题的解。Monte Carlo simulation, also known as stochastic simulation method, is a method of simulating and solving problems by using random numbers (or pseudo-random numbers). This method is named after the Monte Carlo casino in Monaco, as its randomness and unpredictability are similar to gambling games. The core idea of Monte Carlo simulation is to approximate the solution of a complex problem through random sampling.二、理论基础2、 Theoretical basis蒙特卡罗模拟的理论基础主要包括概率论与数理统计、大数定理等。大数定理表明,当样本容量足够大时,事件的发生频率即为概率。这一原理为蒙特卡罗模拟提供了理论基础,使得通过大量随机抽样来近似计算复杂问题的解成为可能。The theoretical basis of Monte Carlo simulation mainly includes probability theory, mathematical statistics, and the law of large numbers. The law of large numbers states that when the sample size is large enough, the frequency of events occurring is the probability. This principle provides a theoretical basis for Monte Carlo simulation, making it possible to approximate the solution of complex problems through a large number of random samples.三、应用步骤3、 Application steps定义问题:明确需要解决的问题,确定问题中涉及的所有变量和参数。Define problem: Clearly identify the problem that needs to be solved and determine all variables and parameters involved in the problem.如:构造一个边长为1的正方形,并在其中划出一个四分之一圆(圆心在正方形中心,半径为0.5)。For example, construct a square with a side length of 1 and draw a quarter circle in it (with the center at the center of the square and a radius of 0.5).定义一个事件:随机地向正方形内投掷一个点,观察该点是否落在四分之一圆内。Define an event: randomly throw a point into a square and observe if the point falls within a quarter circle.生成随机数:为问题中的每一个变量生成随机数,这些随机数遵循变量的概率分布。Generate random numbers: Generate random numbers for each variable in the problem, which follow the probability distribution of the variable.生成在正方形区域内均匀分布的随机点(x, y),其中x和y的取值范围均为[0, 1].Generate random points (x, y) uniformly distributed within a square area, where the values of x and y are both within the range of [0,1]构建模型:使用这些随机数构建问题的实例或场景。Build a model: Use these random numbers to construct instances or scenarios of the problem.执行模拟:在构建的模型上执行所需的计算或分析,得到结果。Execution simulation: Performing necessary calculations or analyses on the constructed model to obtain results.对于每一个随机点,判断其是否满足在四分之一圆内的条件,即判断点(x, y)是否满足x² + y² ≤ 0.25(即点到原点的距离小于等于半径0.5)。For each random point, determine whether it satisfies the condition of being within a quarter circle, that is, whether the point (x, y) satisfies x ²+y ² ≤ 0.25 (i.e. the distance from the point to the origin is less than or equal to a radius of 0.5).统计落在四分之一圆内的点的数量。Count the number of points falling within a quarter circle.重复过程:重复上述步骤多次,每次使用不同的随机数。(例如,10000次、100000次或更多次),以获得更准确的结果。Repetition process: Repeat the above steps multiple times, using different random numbers each time.(e.g. 10000, 100000, or more times) to obtain more accurate results.分析结果:通过分析多次模拟的结果,可以得到问题的统计特性,如期望值、方差、置信区间等。Analysis results: By analyzing the results of multiple simulations, the statistical characteristics of the problem can be obtained, such as expected value, variance, confidence interval, etc.计算落在四分之一圆内的点的数量与总投掷点数的比例,这个比例近似等于四分之一圆的面积与正方形面积的比例,即π/4。Calculate the ratio of the number of points falling within a quarter circle to the total number of thrown points, which is approximately equal to the ratio of the area of a quarter circle to the area of a square, i.e. π/4.将上述比例乘以4,即可得到π的近似值。Multiply the above ratio by 4 to obtain an approximate value of π.四、特点与优势4、 Characteristics and advantages适用性广:蒙特卡罗模拟适用于处理各种复杂系统和计算问题,尤其是那些难以用解析方法求解的问题。Wide applicability: Monte Carlo simulation is suitable for dealing with various complex systems and computational problems, especially those that are difficult to solve analytically.灵活性高:可以根据问题的具体需求灵活调整模拟的参数和模型结构。High flexibility: The simulation parameters and model structure can be flexibly adjusted according to the specific needs of the problem.结果直观:通过模拟可以得到问题的统计特性,结果直观易懂。Intuitive results: The statistical characteristics of the problem can be obtained through simulation, and the results are intuitive and easy to understand.误差可控:通过增加模拟次数,可以减小误差范围,提高结果的准确度。Error controllable: By increasing the number of simulations, the error range can be reduced and the accuracy of the results can be improved.五、应用领域5、 Application Fields蒙特卡罗模拟在商业、工程、物理、金融等多个领域都有广泛应用。例如,在商业领域,可以用于风险管理和决策分析;在工程领域,可以用于系统可靠性和性能评估;在物理领域,可以用于粒子物理和统计物理的模拟研究;在金融领域,可以用于期权定价和风险管理等。Monte Carlo simulation has wide applications in various fields such as business, engineering, physics, and finance. For example, in the business field, it can be used for risk management and decision analysis; In the field of engineering, it can be used for system reliability and performance evaluation; In the field of physics, it can be used for simulation research in particle physics and statistical physics; In the financial field, it can be used for option pricing and risk management.六、工具与软件6、 Tools and software在商业和工程领域,有多种软件工具可以帮助用户执行蒙特卡洛模拟。例如,Minitab、Excel、IBM的SPSS和AnyLogic等仿真软件都提供了专门的蒙特卡洛模拟功能。这些工具各有特点,用户可以根据自己的需求和偏好选择合适的软件来进行蒙特卡洛模拟。In the fields of business and engineering, there are various software tools available to assist users in performing Monte Carlo simulations. For example, simulation software such as Minitab, Excel, IBM's SPSS, and AnyLogic all provide specialized Monte Carlo simulation capabilities. These tools each have their own characteristics, and users can choose the appropriate software for Monte Carlo simulation based on their needs and preferences.综上所述,运筹学蒙特卡罗模拟是一种强大而灵活的数值计算方法,通过随机抽样来近似计算复杂问题的解。其理论基础扎实、应用步骤明确、特点突出且应用领域广泛。随着计算机技术的不断发展和完善,蒙特卡罗模拟将在更多领域发挥重要作用。In summary, Monte Carlo simulation in operations research is a powerful and flexible numerical calculation method that approximates solutions to complex problems through random sampling. It has a solid theoretical foundation, clear application steps, prominent characteristics, and a wide range of application fields. With the continuous development and improvement of computer technology, Monte Carlo simulation will play an important role in more fields.今天的分享就到这里了,如果您对文章有独特的想法,欢迎给我们留言。让我们相约明天,祝您今天过得开心快乐!That's all for today's sharing. If you have a unique idea about the article, please leave us a message, and let us meet tomorrow. I wish you a nice day!翻译:百度翻译参考资料:百度百科,《管理运筹学》本文由LearningYard新学苑整理并发出,如有侵权请后台留言沟通
周二,苹果重回美股第一,成为全球首家市值破3.5万亿美元的上市公司。前任“一哥”微软,下跌1.44%;前前任“一哥”英伟达上涨2.48%.....
大家好,这一章给大家分享一个痛点问题,这个问题应该是困扰过你的一个非常典型的问题.
1. 方法一:使用中琅可变数据打印软件中的PDF工具箱-顺序合并功能实现多个PDF文件合并
小学教育阶段,知识点的学习往往比较基础也很简单,因为小学阶段的教育,重点不只是知识的学习,还有学习习惯的培养和三观的形成。
我前前后后跑遍了十几家仓储设备公司,跟那些制造业的朋友们聊了个痛快,从他们那儿学到了不少仓库管理的实践方法。