excel学习库

excel表格_excel函数公式大全_execl从入门到精通

「SPSSAU|数据分析」:主成分分析步骤汇总

研究背景

主成分分析用于对数据信息进行浓缩,比如总共有20个指标值,是否可以将此20项浓缩成4个概括性指标。除此之外,主成分分析可用于权重计算和综合竞争力研究。即主成分分共有三个实际应用场景:

数据格式

主成分分析时,一列标识1个指标,一行为1个样本;如果为面板数据,比如100家公司每家公司10年,那么就会有100*10=1000个样本,可能需要单独两列分别是公司名和年份来标识面板格式而已,但主成分分析并不区分是否面板数据,只针对指标进行分析即可,另一般分析样本量需要超出分析项(指标)的5倍,类似数据格式如下图:

SPSSAU操作

1.上传数据

登录账号后进入SPSSAU页面,点击右上角“上传数据”,将处理好的数据进行“点击上传文件”上传即可。

2.拖拽分析项

可以勾选“成分得分”以及“综合得分”点击开始分析后,左侧分析框就会出现,成分得分与综合得分:

SPSSAU分析

背景:当前有一份数据,共涉及9个指标,希望将此9个指标使用主成分分析进行降维,并计算综合得分。

1.KMO 和 Bartlett 的检验

使用主成分分析进行信息浓缩研究,首先分析研究数据是否适合进行主成分分析,从上表可以看出:KMO为0.913,大于0.6,满足主成分分析的前提要求,意味着数据可用于主成分分析研究。以及数据通过Bartlett 球形度检验(p<0.05),说明研究数据适合进行主成分分析。

2.方差解释率表格

上表格针对主成分提取情况,以及主成分提取信息量情况进行分析,从上表可知:主成分分析一共提取出2个主成分,此2个主成分方差解释率分别是55.907%,8.133%,累积方差解释率为64.040%另外,本次分析共提取出2个主成分,它们对应的加权后方差解释率即权重依次为:55.907/64.040=87.30%;8.133/64.040=12.70%;

3.载荷系数表格

载荷系数表格

共同度

补充说明:

4.成份得分系数矩阵

使用主成分分析目的在于信息浓缩权重

0.151*X1+0.142*X2+0.150*X3+0.162*X4+0.152*X5+0.147*X6+0.134*X7+0.142*X8+0.154*X9;
成分得分2(成分2)=

-0.076*X1-0.205*X2-0.097*X3-0.090*X4-0.387*X5-0.498*X6+0.101*X7+0.823*X8+0.463*X9;

5.碎石图

碎石图

6.载荷图

载荷图

7.线性组合系数及权重结果

SPSSAU的主成分分析结果中默认提供“线性组合系数及权重结果表”包括上述的过程值及结果,包括线性组合系数、综合得分系数、以及指标各自的权重。

6.综合得分排名

根据之前勾选的“综合得分”,即可自动得到综合得分结果。

SPSSAU默认命名为CompScore_XXXX。使用【数据处理】→【标题处理】功能可以对题目重命名。

【数据处理】→【生成变量】里的排名功能。点击“综合得分”,再选择“排名(Rank)”,点击确认处理。

右上角“我的数据”也可以将数据进行下载。

其它说明

1. 提示出现奇异矩阵?

2010

2. ‘分析之前是否需要对数据进行标准化处理’?

SPSSAU默认就已经进行过标准化处理,因此不需要再对数据处理。当然标准化后的数据再次标准化依旧还是自身没有任何变化,结果永远均一致。

3.综合得分如何使用?

SPSSAU默认可保存综合得分(以及因子得分等);一般该值越大表示越有竞争力等;研究者通常需要把综合得分的具体数据下载后使用,并且在EXCEL进行排序(也可使用SPSSAU生成变量里面的排序功能)。 通过右上角我的数据可下载具体综合得分的具体数据等。

4.特征根值没有大于1可以吗?

主成分分析时通常需要综合自己的专业知识,以及软件结果进行综合判断,即使是特征根值小于1,也一样可以提取主成分。

5.主成分回归是什么意思?

进行主成分时,选择保存‘成分得分’,然后利用系统生成的‘成分得分’数据进行线性回归,即为主成分回归。

6.累积方差解释率出现100%以上如何办?

正常情况下,累积方差解释率会小于100%,但如果数据的共线性问题太严重,有可能出现方差解释率值大于100%,此时建议进行相关分析,找出相关性太强(比如相关系数大于0.8)的项,然后从分析框中移出后再次分析。与此同时,如果样本量太少也可能出现此问题建议加大样本量即可。

7. KMO值过低?

一般需要KMO值大于0.6即可,如果是两个分析项,KMO值一定是0.5;因而建议删除掉共同度(公因子方差)值较低项,这样可以提升KMO值。

如果不输出KMO值,意味着数据质量过差,建议可使用相关分析看下相关关系,如果相关系数值基本均小于0.3(或者没有呈现出显著性),则说明题项间关联性弱,则KMO值一定会较低,建议先移除相关系数值较低项后再次分析。

提示:

总结

主成分分析的原理在于信息浓缩,对于信息浓缩的帮助越大,指标权重可越大,正是利用此原理,可进行指标权重的计算。主成分分析的作用更多侧重于计算权重、计算综合竞争力。不会过多关注主成分与分析项对应关系,不要求每个主成分有明确的含义。

发表评论:

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

«    2024年12月    »
1
2345678
9101112131415
16171819202122
23242526272829
3031
控制面板
您好,欢迎到访网站!
  查看权限
网站分类
搜索
最新留言
    文章归档
      友情链接