指数和对数的转换公式是a^y=xy=log(a)(x)。
1.对数函数的一般形式为 y=logax,它实际上就是指数函数的反函数,图象关于直线y=x对称的两函数互为反函数,可表示为x=a^y。因此指数函数里对于a存在规定——a>0且a≠1,对于不同大小a会形成不同的函数图形关于X轴对称、当a>1时,a越大,图像越靠近x轴、当0<a<1时,a越小,图像越靠近x轴。

2.可通过指数函数或对数函数的单调性来比较两个指数式或对数式的大小。求函数y=afx的单调区间,应先求出fx的单调区间,然后根据y=au的单调性来求出函数y=afx的单调区间.求函数y=logafx的单调区间,则应先求出fx的单调区间,然后根据y=logau的单调性来求出函数y=logafx的单调区间。

3.如果b^nx,则记n=logbx,其中b叫做底数,x叫做真数。n叫做以b为底的x的对数,log(b)(x)函数中x的定义域是x>0,零和负数没有对数,b的定义域是b>0且b≠1,当01时,图象上显示函数为(0,+∞)单,,随着a的减小,图象逐渐以(1.0)点为轴逆时针转动,但不超过X=1。
